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Abstract: The paper is aimed to focus on the 
performance analysis of a truncated multi-channel  

 queuing system to be used in the machine 
interference models arising out of industrial and computer 
manufacturing etc. A total cost function is subjected to the 
optimization in view of arrival and service parameters by 
using a computing algorithm of numerical methods. The 
optimal values of various performance measures of the 
system such as optimal number of machine-customers, 
optimal waiting time for repair, optimal traffic intensity are 
evaluated by using hypothetical data-input corresponding to 
the optimal total cost of the system. Results are tabled and 
also presented graphically to better gain the insight into 
applications of derived performance measures of the system 
in different working conditions. 
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1. INTRODUCTION 

Performance analysis of the queuing models occupies a 
prominent place in the research of queuing theory, a 
significant aspect of the optimization theory. Optimization 
techniques are widely used in the areas of production, 
manufacturing, and planning including the communication 
systems to effectively assess the performance of the 
systems. It has drawn the attention of the researchers 
seriously engaged in this area of research. Also, to date it 
reveals that no sufficient work has been done with regard to 
computation of optimal performance measures of the 
queuing system by optimizing both the parameters, arrival 
and service rates, in general and truncated multi-channel 
queuing system in particular.  

Nowadays, a trend has been redirected and shifted to 
investigate more realistic performance measures of the 
system as compared to general theoretical approach that 
embodies hardly a bit of application. Some of the relevant 
researches are in sequel here. Chakravarthy et al. [2] 
considered a multi-server queuing model in which 
customers arrive according to Markovian arrival process 
(MAP). They have performed steady-state analysis of the 
model using direct truncation and matrix-geometric 
approximation. Efficient algorithms for computing various 
steady-state performance measures and illustrative 
numerical examples have also been presented. Artalejo and 
Gomez-Corral [1] shown that the limiting distribution of the 
system state can still be reduced to a Fredholm integral 
equation. They solved such an equation numerically by 
introducing an auxiliary truncated system which can easily 
be evaluated with the help of regenerative approach. 

Tirtiroglu [15] has presented an entropy based 
uncertainty metric for measuring the operating performance 

of  and  models. The author 
considered a connection between entropy and the 
uncertainty in queuing. El-Taha and Maddah [4] have 
considered a multi-server first come, first serve (FCFS) 
queuing model where servers are arranged in two stations in 
series. They have shown that their scheme provides better 
system performance than the standard parallel multi-server 
model in the sense of reducing the mean delay per customer 
in heavy traffic system. Naor [10] discussed the pricing 
problem by giving quantitative arguments based on an 

 queuing model. In this work, he has shown the 
necessity of limiting the arrivals to a queuing system by a 
toll to achieve the social optimality. Knudsen [6] has 
extended Naor’s study to a multi-server queuing system. 
Wang et al. [3] have considered an unloader queuing model 
in which N identical trailers are unloaded by one or more 
unloaders and developed a cost model to determine the 
optimal number of trailers. 
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Shawky and El-Paoumy [13] treated the truncated multi-
channel queue  with both balking and 
reneging concepts. They derived steady-state probabilities of 
the model together with some measures of effectiveness 
where these measures were analytically deduced. Taha [14] 
discussed the two conflicting costs viz. cost of offering the 
service and the cost of delay in offering the service and 
established the cost model for the system. He also derived 
formulas to evaluate the performance measures of various 
queuing systems. Shawky [12] analyzed the machine 
interference model  with balking, 
reneging, and spares. He has presented the steady-state 
probabilities and expected number of customers in the 
system for four different cases. He also considered the 
truncated multi-channel queue  as one of the 
cases under consideration. Gross and Harris [5] have 
discussed the  queuing system with truncation. 
They derived steady-state probabilities for the system and 
obtained formulas for various performance measures of the 
system. They also discussed the performance measures of 
the multi-channel queue  with truncation. 
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Mishra and Mishra [7] discussed the cost analysis of the 

machine interference model . Here, they 
constructed a cost function in order to determine the total 
optimal cost of the system. A fast converging N-R method 
has been used to solve the non-linear function involving 
service rate and hyper geometric functions including other 
parameters. They optimized the total cost function with 
respect to single parameter, service rate

NKCMM ////

μ . Morse [9] has 
solved the queuing system with hyper-Poisson arrivals and a 
single exponential channel without balking or reneging. 
Neuts and Lucantoni [11] studied a queue with N servers 
who may breakdown and repair at a facility which has c 
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repair crews. They discussed the stationary distributions of 
various waiting times. Mishra [8] has made an attempt to 
compute the total optimal cost of interdependent queuing 
system with controllable arrival rates as an important 
performance measure of the system. 

. In this paper, we define a total cost function for the 
system and apply optimization with respect to both the 
parameters arrival rate and service rate simultaneously. For 
computing the total optimal cost of the system and other 
performance measures, like optimal expected number of 
customers in the system, optimal waiting time in the system, 
and optimal traffic intensity of the system, a computing 
algorithm has been developed. Finally, numerical 
demonstrations in the form of tables and graphs are added to 
gain a significant insight into the problem. Various 
observations are drawn to realize the problem closely related 
to real life situations. 

 
2. PERFORMANCE ANALYSIS OF THE MODEL 
 

For the truncated multi-channel queue  
(Poisson arrival and exponential service), the system 
probabilities are as given by Shawky [12], 
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(1) 
where  is the empty system probability,  is the 

number of servers, 
0P C

K  is the capacity of the system, λ  is 
arrival rate, μ  is service rate, and ρ  is the traffic intensity.  

Expected number of customers in the system  is 
given by (Shawky [12]), 
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Therefore,  
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Differentiating (2) partially with respect to λ , we get                      
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Differentiating (2) partially with respect to μ , we get                      
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Differentiating (1) partially with respect to λ  and μ  
respectively, we have 
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From (5) and (2), we observe that 
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The total cost function ( )
f
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function in two variables λ  and μ . Differentiating this 
equation partially with respect to λ  and μ  spectively, we 
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constitute a set of two non-linear equations in two 
variables λ  and μ . We shall solve these two equations by 
applying fast converging Newton-Raphson’s method to 
obtain critical point ( )μλ , .  

If ( )ii μλ ,  is the initial guess for equations (14) and (15) 
then we have, 

( ) ( )
δ

μφψμψφ
λλ

∂∂−∂∂
−=−+

iiii
i1i

( ) ( )
δ

λψφλφψ
μμ

∂∂−∂∂
−=−+

iiii
ii 1  , where 

λ
ψ

μ
φ

μ
ψ

λ
φ

δ
∂
∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂

= iiii  

By partial differentiation, we have 

  
2

2

2
⎟
⎠
⎞

⎜
⎝
⎛+

∂
∂

−
∂
∂

=
∂
∂

λλλλλ
φ MMMMf                                   (16) 

( )
λμμλ

μ
μ
φ fMMMf +

∂
∂

−
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛−=

∂
∂

2

2
                            (17) 

{ fMMCMfC −
∂
∂

+
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

λμλμ
λ

λ
ψ 2

2

2

2 }          

( )
λ
MfCmC ++ 12                                                    (18) 

    
μμμμ

ψ
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂

∂
=

∂
∂ MMCMfC 22

2

2     

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− 2

2

212
μμ
MCMfCmC                        (19) 

From (16), (17), (18), and (19), it is clear that we have to 

find 2

2

λ∂
∂ M

 and 2

2

μ∂
∂ M . 

( ) ( )
( )( ){ }

2

221

2

2

2

2 1
!2!2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
−

+
−

=
∂
∂ −−

=

−

∑
μ
λ

μλ
μ
λ

μ
λ

λ
C

CC
C

C
n

nM
C

CC

n
n

n

 

 11



             ( )
( ) ( )( ){ }

31

1 11
!1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+
−

+
+

−

μ
λ

μλ
μ
λ

C

CCC
C

C
C

C
 

           ( )
( ) ( )( ){ }

42
12

!1
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+
−

+
+

μ
λ

μλ
μ
λ

C

CCC
C C

C
 

           ( ) ( ) ( ){ }
21

1 1
!

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−+
+

+

−−

μ
λ

μλ
μ
λ

C

KCK
C

CKK
K

KKC
 

           ( ) ( ) ( ){ }
32

2
!

12

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−+
+

+

−

μ
λ

μλ
μ
λ

C

KCK
C

CK
K

KKC
 

           ( ) ( ){ }
43

1 32
!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
+

+

+−

μ
λ

μλ
μ
λ

C

KCK
C

C
K

KKC
 

( )
( )∑

−

=
+−

+
=

∂

∂ 1

1
22

2

!1
1C

n
n

n

n
nnM

μ
λ

μ
  

            ( )
( )

( )( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
−
+

+
+ 2

2

2
1

!1
1

μ
λ

μλ
μ
λ

C

CC
C

CC
C

C
 

            ( )
( )

( ) ( )( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+
−
+

+
+

+

33

1 11
!1

12

μ
λ

μλ
μ
λ

C

CCC
C
C

C

C
 

            ( )
( ) ( )( ){ }

44

2 12
!1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−+
−

+
+

+

μ
λ

μλ
μ
λ

C

CCC
C C

C
 

            

( )( ) ( ) ( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−++
+

+

+−

23

1 1
!

12

μ
λ

μλ
μ
λ

C

KCK
C

CKK
K

KKC
  

            ( ) ( ) ( ){ }
34

2 2
!

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−+
+

+

+−

μ
λ

μλ
μ
λ

C

KCK
C

CK
K

KKC
 

            ( ) ( ){ }
45

3 3
!

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
+

+

+−

μ
λ

μλ
μ
λ

C

KCK
C
C

K

KKC
 

The total expected cost of the system TC  will be 
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The above conditions are sufficient for the total expected 
cost of the system TC  to be optimal at ( )μλ , . We find the 
various performance measures of the system which are 
optimal expected number of customers in the system sL , 
optimal waiting time in the system sW , and optimal traffic 
intensity ρ . 

 
3. PUTING ALGORITHM 

The following computing algorithm is developed to find 
out the optimal arrival and service rates, total optimal cost, 
and other performance measures of the system. 

Step 1: begin 
Step 2: input all the parameters 
Step 3: input initial guess for arrival and service rates 
Step 4: compute all the derivatives 
Step 5: iterating arrival and service rates 
Step 6: compute optimal arrival and service rates 
Step 7: compute optimal performance measures 
Step 8: compute total optimal cost 
Step 9: data output 
Step 10: end 
 

4. SENSITIVITY ANALYSIS OF THE MODEL 
The aim of the sensitivity analysis is to demonstrate the 

variability of the model based on the simulations or the 
hypothetical data-input. In this chapter, we prefer the 
hypothetical data-input to run the search program of the 
system. We wrote a program in C++ to apply a two-variable 
version of N-R method to compute the optimal arrival and 
service rates and consequently the total optimal cost of the 
system, optimal expected number of customers in the 
system, optimal waiting time in the system, and optimal 
traffic intensity of the system are also computed. In 
sensitivity analysis, variation effect of parameters on the 
total optimal cost and other performance measures is 
presented in the form of graphs and tables. 
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Table no 1: Service Cost vs. Total Optimal Cost and 
various Performance Measures 

50.2,3,20,4 2 ==== CmKC  

    (C1) )(λ   )(μ  ( )TC    sL  sW  ρ  

3.50 2.62 4.79 121.92 5.4 2.06 0.55 
4.00 2.66 4.80 138.91 6.7 2.52 0.55 
4.50 2.69 4.80 155.66 8.1 3.01 0.56 
5.50 2.73 4.81 189.59 9.3 3.41 0.57 
6.50 2.77 4.82 223.66 11.4 4.12 0.57 
7.50 2.79 4.83 257.90 12.2 4.37 0.58 
8.50 2.81 4.83 291.68 13.0 4.63 0.58 
9.50 2.82 4.83 325.47 15.6 5.53 0.58 

10.50 2.83 4.84 360.01 17.7 6.25 0.58 
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Fig.1.1: Service Cost vs. Total Optimal Cost 

 
 

0
2

4
6

8
10
12

14
16

18
20

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10
.5

Service cost

Optimal expected
no. of customers
in the system

Optimal w aiting
time in the
system

Optimal traff ic
intensity

 
Fig.1.2: Service Cost vs. various Performance Measures 

 
 
 
 
 
 
 

Table  no  2: Waiting Cost vs. Total Optimal Cost and 
various Performance Measures 

50.10,3,20,4 1 ==== CmKC  
(C2) )(λ  )(μ  ( )TC  sL  sW  ρ  

2.50 2.83 4.84 360.01 17.7 6.25 0.58 
3.00 2.81 4.83 360.16 17.2 6.12 0.58 
4.00 2.77 4.82 361.22 16.5 5.96 0.57 
5.00 2.73 4.81 362.34 15.8 5.79 0.57 
6.00 2.68 4.80 363.54 15.0 5.60 0.56 
7.00 2.64 4.79 364.76 14.2 5.38 0.55 
8.00 2.60 4.78 366.03 13.5 5.19 0.54 
9.00 2.55 4.77 367.42 12.7 4.98 0.53 
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Fig.2.1: Waiting Cost vs. Total Optimal Cost 

 

0
2
4
6
8

10
12
14
16
18
20

3 4 5 6 7 8 9

Waiting cost

Optimal expected no.
of customers in the
system

Optimal waiting time in
the system

Optimal traffic intensity

 
Fig.2.2: Waiting Cost vs. various Performance Measures 

 
Table- 3: No. of Servers vs. Total Optimal Cost and 

various Performance Measures  
 

20,3,50.2,50.3 21 ==== KmCC  
(C) )(λ  )(μ  ( )TC  sL  sW  ρ  

3 1.37 1.77 40.33 8.4 6.13 0.77 
4 2.62 4.79 121.92 5.3 2.02 0.55 
5 2.49 5.38 156.04 5.8 2.33 0.46 
6 1.72 4.69 154.55 4.9 2.85 0.37 
7 1.11 3.97 147.89 3.6 3.24 0.30 
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Fig.3.1: No. of Servers vs. Total Optimal Cost 
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Fig.3.2: No. of Servers vs. various Performance Measures 

 
 

Table- 4: No. of Customers in the System (m) vs. Total 
Optimal Cost and various Performance Measures 

 
CmCCKC <==== ,50.2,50.3,20,7 21  

 
(m) )(λ  )(μ  ( )TC  sL  sW  ρ  

3 1.11 3.97 147.89 3.6 3.24 0.28 
4 1.13 3.98 162.04 3.8 3.36 0.28 
5 1.14 3.99 176.33 3.8 3.33 0.29 
6 1.77 4.72 221.43 4.4 2.49 0.38 
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Fig.4.1: No. of Customers in the System (m) vs. Total 
Optimal Cost 
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Fig.4.2: No. of Customers in the System (m) vs. various 

Performance Measures 
 

Table no 5: Capacity of the System vs. Total Optimal 
Cost and various Performance Measures 

 
50.2,50.3,3,4 21 ==== CCmC  

(K) )(λ  )(μ  TC  sL  sW  ρ  
20 2.62 4.79 121.92 5.3 2.02 0.55 
22 2.59 4.76 121.21 5.8 2.24 0.54 
24 2.57 4.74 120.74 6.5 2.53 0.54 
26 2.56 4.73 120.50 6.9 2.70 0.54 
28 2.55 4.72 120.26 7.3 2.86 0.54 
30 2.55 4.72 120.26 8.1 3.18 0.54 
32 2.55 4.72 120.26 8.8 3.45 0.54 
34 2.55 4.71 120.00 9.4 3.69 0.54 
36 2.55 4.71 120.00 10.1 3.96 0.54 
38 2.54 4.71 120.03 10.7 4.21 0.54 
40 2.54 4.71 120.03 11.0 4.33 0.54 
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Fig.5.1: Capacity of the System vs. Total Optimal Cost 

 

0

2

4

6

8

10

12

20 22 24 26 28 30 32 34 36 38 40

Capacity of the system

Optimal expected no.
of customers in the
system
Optimal waiting time
in the system

Optimal traffic
intensity

 
Fig.5.2: Capacity of the System vs. various Performance 

Measures 
 
Observations: In Figure 1.1, we see that the optimum 

arrival and service rates do not vary as service cost increases 
which shows that the system is independent of service cost 
after a certain stage of arrival and service. As service cost 
increases the total optimal cost also increases. An increase 
of about 14.3% in service cost causes about 13.9% increase 
in total optimal cost. Hence these two costs show the 
positive correlation between them. In Figure 1.2, we observe 
that as service cost increases optimal expected number of 
customers in the system and optimal waiting time in the 
system also increase but the optimal traffic intensity remains 
constant. In fact 22.2% increase in service cost produces 
14.8% increase in optimal expected number of customers in 
the system and 13.3% increase in optimal waiting time in 
the system. Thus these two performance measures are in 
positive correlation with service cost. 

In Figure 2.1, we observe that the optimum arrival and 
service rates do not vary as waiting cost increases which 
shows that the system is independent of waiting cost after a 
certain stage of arrival and service. As waiting cost 
increases the total optimal cost also increases but quite 
slowly. In Figure 2.2, we see that as waiting cost increases 
the optimal expected number of customers in the system and 
optimal waiting time in system decrease quite slowly and 

traffic intensity does not vary significantly. It is almost 
constant. Thus there is a weak correlation between waiting 
cost and optimal expected number of customers in the 
system and optimal waiting time in the system.  

In Figure 3.1, we see that as the number of servers 
increases the optimum arrival and service rates are also 
shown as fluctuating. As number of servers increases the 
total optimal cost fluctuates but it shows an increasing trend. 
In this way, a positive correlation between number of 
servers and total optimal cost can be seen here. In Figure 
3.2, we observe that optimal expected number of customers 
in the system fluctuates in the beginning and then shows 
decreasing trend whereas optimal waiting time in the system 
also fluctuates in the beginning but shows increasing trend 
as number of servers increases. The optimal traffic intensity 
of the system decreases as number of servers increases. In 
fact 28.5% decrease is observed in optimal traffic intensity 
by increase of one server. 

In Figure 4.1, we find that the number of customers in 
the system m increases but optimum arrival and service rates 
do not vary significantly. As m increases the total optimal 
cost increases. In fact, an increase of one customer in the 
system causes about 9.8% increase in total optimal cost. In 
Figure 4.2, we observe that optimal expected number of 
customers in the system, optimal waiting time in the system, 
and optimal traffic intensity does not vary significantly as 
number of customers in the system m increases. 

In Figure 5.1, it may be of interest to note that the 
optimum arrival and service rates are not varying as capacity 
of the system increases which shows the stability of the 
system. Moreover, there is no correlation between capacity 
of the system, optimum arrival and service rates. As 
capacity of the system increases the total optimal cost does 
not vary. In Figure 5.2, we observe that optimal expected 
number of customers in the system and optimal waiting time 
in the system increase as capacity of the system increases 
and increase of two units in the capacity of the system 
causes 9.4% increase in optimal expected number of 
customers in the system and 10.8% increase in optimal 
waiting time in the system. Thus both the performance 
measures of the system are in positive correlation with the 
capacity of the system. The optimal traffic intensity does not 
vary with capacity of the system. 

 
5. CONCLUSION 

Finally, we conclude with the remark that present 
research on the computation of optimal performance 
measures of the truncated multi-channel queuing model with 
Poisson arrival, exponential service, and finite capacity can 
pave the way for future progress of research in various fields 
including technical applications for the digital 
communication systems and as well as in assessing the 
performance measures in the form of optimal arrival, 
optimal service, and optimal cost of computer networking 
by applying this queuing approach. The aim of the 
numerical demonstration is to study the variability of the 
model that is, to assess the effect of one parameter on the 
others especially such parameters which characterize the 
performance measures of the model. Numerical 
demonstration is carried out with the help of hypothetical 
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data-input. The computer program developed in the paper 
can also be tested for any real case study at later stage. It has 
also a good deal of potential to the applications in other 
areas such as inventory management, production 
management, computer system etc. 
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